

ANÁLISE EXPERIMENTAL DE TURBINA HIDROCINÉTICA CARENADA EM RESERVATÓRIO

Ramiro G. Ramirez Camacho¹, Thiago Resek¹, Letícia de Oliveira Silva Della Colletta¹, Oswaldo Saavedra², Edna R. Silva¹, José Vitor Gomes¹, Tania M. Arispe Angulo¹, Germán E. Niño Del Rio¹, Geraldo Lúcio Tiago Filho¹, Arcilan Trevenzoli Assireu¹

1 Universidade Federal de Itajubá, Itajubá, MG, Brasil ²Universidade Federal do Maranhão, MA, Brasil ramirez@unifei.edu.br

INTRODUÇÃO

A geração de energia elétrica por meio de usinas hidrelétricas é uma das principais fontes de energia no Brasil, representando mais de 60% da capacidade instalada no país (EPE, 2022). O Brasil possui um potencial hidrelétrico significativo, com diversos rios, possibilitando a construção de usinas de grande porte. No entanto, com o aumento da demanda por energia, há necessidade investimentos em novas fontes energéticas, especialmente em regiões remotas ou de dificil acesso. Um dos métodos mais comuns de aproveitamento dessa fonte de energia é o uso de turbinas hidrocinéticas, que podem ser instaladas em rios com correntes significativas, áreas costeiras grandes amplitudes de maré aproveitamento de correntes marinhas. O uso dessas turbinas é uma tecnologia em evolução que oferece vantagens como alta eficiência energética, baixa emissão de gases de efeito estufa e impacto ambiental mínimo (Progenio et al., 2020). Este trabalho apresenta a etapa inicial de um estudo relacionado ao aproveitamento das energias oceânica e fluvial por meio do projeto de rotores de turbinas axiais, componentes hidromecânicos, geradores e sistemas de controle, além de análises comportamento hidrodinâmico equipamentos por meio de estudos experimentais.

MATERIAIS E MÉTODOS

Um protótipo de turbina foi fabricado em acrílico e revestido com fibra de vidro para testes em laboratório. A turbina possui um rotor de 6 pás com diâmetro de 0,545 m, usinado em alumínio. O difusor tem diâmetro interno de garganta de 0,60 m e 0,80 m na saída. A turbina é controlada por um sistema de controle, permitindo a rotação constante da turbina enquanto a velocidade da água é variada. O sistema (Figura 1) é composto por um motor de corrente contínua (DC) de 750 W (24 volts), e o valor da tensão é controlado em tempo real por uma placa eletrônica que mede instantaneamente a rotação da turbina por meio de um encoder. Entre o motor DC e o rotor da turbina, foi instalado um sensor de torque rotativo (20 N·m) para a medição do torque instantâneo. Esse sistema está conectado a um conjunto de baterias automotivas de 24 V. O

sistema inclui uma placa de aquisição de dados, que se conecta a um software para controle dos experimentos. Para obter resultados de testes em um fluxo de água livre, similar às condições de operação esperadas mas com controle da velocidade do fluxo, foi construída uma estrutura na parte frontal de um pequeno barco. Para obter a velocidade do barco, utilizou-se um sensor básico de fluxo de água em conjunto com um ADCP. Os testes foram realizados no lago do reservatório de FURNAS, localizado na cidade de Guapé-MG (Brasil). Houve duas velocidades principais: 0,78 m/s e 1,07 m/s. A rotação da turbina foi variada de 20 a 100 rpm, com incremento de 5 rpm, para 0,879 m/s; e de 50 a 120 rpm, com incremento de 10 rpm, para 1,07 m/s.

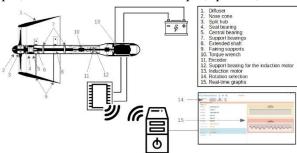


Figura 1.- Sistema de controle e equipamentos

RESULTADOS

Com base nos resultados experimentais e considerando os valores de Cp-máx = 1,15 e λ = 2,0 (ver Figura 2), é possível prever o comportamento de turbinas hidrocinéticas semelhantes com atenção especial ao projeto de uma máquina de 5 kW. A Figura 3 mostra a relação entre a velocidade do fluxo e a potência mecânica para diferentes tamanhos de turbinas hidrocinéticas, quantificados em relação ao diâmetro da garganta do difusor ou ao diâmetro na saída do difusor. Como exemplo, pode-se verificar que, para uma corrente de 2,5 m/s e uma turbina com diâmetro da garganta do difusor de 1,1 m, obtém-se uma potência de 7,0 kW; no entanto, para uma velocidade de 2,0 m/s, a mesma turbina resulta em uma potência de 2,5 kW. A Figura 3 mostra o comportamento do protótipo representado por linha e pontos em azul, correspondente ao diâmetro Dg = 0,58 m, onde se verificou que, com uma velocidade relativa de fluxo de 1,07 m/s, obteve-se uma potência em torno de 80 Watts. Por outro lado, o protótipo com

uma velocidade de fluxo de 2,0 m/s alcançaria uma potência de até 800 Watts. A Figura 4 mostra a relação entre a rotação em rpm e o diâmetro da garganta para diferentes velocidades de fluxo. Isso é útil para prever a rotação angular no dimensionamento do gerador de rotação variável. Na Figura 5, é possível observar os dados experimentais obtidos nos testes, comparados com os dados obtidos nas simulações CFD de Rezek et al. (2023) e os resultados experimentais de testes anteriores utilizando ar como fluido (Rodrigues, 2023).

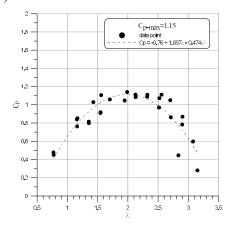


Figura 2.- Resultados experimentais da variação de Cp

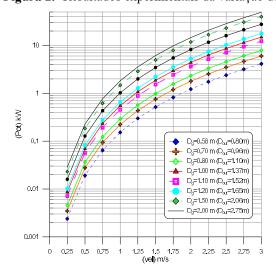


Figura 3.- Velocidade da água vs. Potência mecânica CONCLUSÔES

A partir dos dados de torque obtidos nos testes da turbina, é possível determinar a curva do coeficiente de potência com base na nuvem de pontos interpolados por regressão polinomial. O ponto ótimo de Cp é encontrado em 1,16, com λ igual a 1,92. Pode-se concluir que a bancada de testes permitirá uma ampla gama de possibilidades para experimentos com modelos de turbinas hidrocinéticas axiais, abrangendo desde baixas velocidades de partida até condições hipotéticas de alta velocidade de fluxo. Além disso, os testes podem fornecer dados significativos para prever o potencial de potência da turbina utilizando uma

versão em pequena escala.

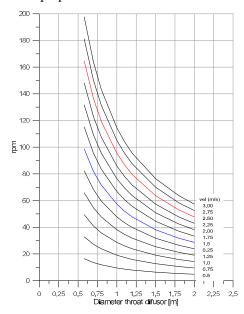
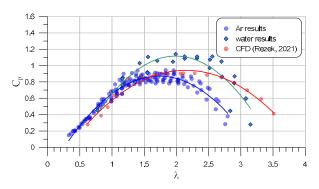



Figura 4.- Velocidade do fluxo vs. Potência Mecânica

Figura 5.- Comparação da variação de Cp e λ entre os resultados numéricos e experimentais.

REFERENCIAS

EPE, Balanço Energético Nacional (BEN) 2022: Ano base 2021 - Relatório Final, (2022) 264. http://www.epe.gov.br.

Progênio, M.F., da Costa Filho, F.A.M., Crispim, D.L., Raiol Souza, M.J., Pimentel da Silva, G.D., Fernandes, L.L. Ranking sustainable areas for the development of tidal power plants: A case study in the northern coastline of Brazil, Int. J. Energy Res. 44 (2020) 9772–9786. https://doi.org/10.1002/er.5716.

Rezek, T.J., Camacho, R.G.R., Manzanares-Filho, N., A novel methodology for the design of diffuser-augmented hydrokinetic rotors, Renew. Energy. 210 (2023) 524–539. https://doi.org/10.1016/j.renene.2023.04.070.

Rodrigues, A.L., Botan, A.C.B., Colletta, L. O.S.D., Silva, E.R., Camacho, R.G.R. Análise experimental do comportamento de turbinas hidrocinéticas carenadas em banco de ensaios com fluxo de ar. V Latin American Hydro Power & Systems Meeting. (2023).